Cross-coupling reaction between arylboronic acids and carboranyl iodides catalyzed by graphene oxide (GO)-supported Pd(0) recyclable nanoparticles for the synthesis of carboranylaryl ketones.

نویسندگان

  • Algin Oh Biying
  • Venu R Vangala
  • Chia Sze Chen
  • Ludger Paul Stubs
  • Narayan S Hosmane
  • Zhu Yinghuai
چکیده

Well-dispersed palladium(0) nanoparticles with small and narrow size distributions were synthesized conveniently on a graphene oxide (GO) surface. The GO-supported nano-Pd(0) was found to be a highly efficient and recyclable catalyst for the carbonylative cross-coupling reaction between arylboronic acids and aryl and carboranyl iodides, respectively. Benzophenone and a series of carboranylaryl ketones, 1-R-2-[C(=O)Ar]-1,2-C2B10H10 (R = H, Me, Ph; Ar = C6H5, C6H4-4-OMe and C6H4-4-F), were synthesized and fully characterized. The catalyst was recyclable at least three times with sustained activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of MCM-41@L-arginine@Pd(0) and its excellent catalytic activity as recyclable heterogeneous catalyst for Suzuki-Miyaura cross-coupling reaction

MCM-41@L-Arg@Pd(0) has been prepared by some consequence reactions. This nano structural material has been characterized via different technique including: XRD, TGA, BET, EDS, X-Ray maps, SEM, ICP-OES and FT-IR analysis. The synthesis of a variety of biphenyl compounds has been achieved successfully via a reaction of aryl halides with arylboronic acids in the presence of this nanostructure (MCM...

متن کامل

One –step synthesis of PdCo alloy nanoparticles decorated on reduced grahene oxide as an Electro-catalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells

We report a Pd-Co (3:1)/graphene oxide (Pd3Co /GO) catalyst through a one-step strategy. GO is synthesized from graphite electrodes using ionic liquid-assisted electrochemical exfoliation. Controllable GO-supported Pd3Co electrocatalystis then was reduced by ethylene glycol as a stabilizing agent to prepare highly dispersed PdCo nanoparticles on carbon graphene oxide to be used as oxygen reduct...

متن کامل

Graphene Oxide-Supported Oxime Palladacycles as Efficient Catalysts for the Suzuki–Miyaura Cross-Coupling Reaction of Aryl Bromides at Room Temperature under Aqueous Conditions

Palladacycles are highly efficient precatalysts in cross-coupling reactions whose immobilization on carbonaceous materials has been hardly studied. Herein, we report a detailed study on the synthesis and characterization of new oxime palladacycle-graphene oxide non-covalent materials along with their catalytic activity in the Suzuki–Miyaura reaction. Catalyst 1-GO, which has been fully characte...

متن کامل

Magnetic amine-functionalized graphene oxide as a novel and recyclable bifunctional nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives

The new magnetic amine-functionalized graphene oxide (Fe3O4-GO-NH2) nanocatalyst was prepared through the reaction of 3-aminopropyltriethoxysilane (APTES) with magnetic graphene oxide (Fe3O4-GO). It was characterized by XRD, TEM, SEM, FT-IR and EDX techniques. The intrinsic carboxylic acids on the edges of Fe3O4-GO alo...

متن کامل

Suzuki–Miyaura cross-coupling reaction of 1-aryltriazenes with arylboronic acids catalyzed by a recyclable polymer-supported N-heterocyclic carbene–palladium complex catalyst

The Suzuki-Miyaura cross-coupling reaction of 1-aryltriazenes with arylboronic acids catalyzed by a recyclable polymer-supported Pd-NHC complex catalyst has been realized for the first time. The polymer-supported catalyst can be re-used several times still retaining high activity for this transformation. Various aryltriazenes were investigated as electrophilic substrates at room temperature to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 13  شماره 

صفحات  -

تاریخ انتشار 2014